
NASA Contractor Report CR-2011-216299 
 

 

 

Upgrade Summer Severe Weather Tool 
 

 

 
Leela Watson 
Applied Meteorology Unit 
Kennedy Space Center, Florida 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

April 2011 



NASA STI Program ... in Profile 

 
Since its founding, NASA has been dedicated 

to the advancement of aeronautics and space 
science. The NASA scientific and technical 
information (STI) program plays a key part in 
helping NASA maintain this important role. 

 
The NASA STI program operates under the 

auspices of the Agency Chief Information 
Officer. It collects, organizes, provides for 
archiving, and disseminates NASA’s STI. The 
NASA STI program provides access to the NASA 
Aeronautics and Space Database and its public 
interface, the NASA Technical Report Server, 
thus providing one of the largest collections of 
aeronautical and space science STI in the world. 
Results are published in both non-NASA channels 
and by NASA in the NASA STI Report Series, 
which includes the following report types: 

 
 TECHNICAL PUBLICATION. Reports 

of completed research or a major 
significant phase of research that present 
the results of NASA Programs and 
include extensive data or theoretical 
analysis. Includes compilations of 
significant scientific and technical data 
and information deemed to be of 
continuing reference value. NASA 
counterpart of peer-reviewed formal 
professional papers but has less stringent 
limitations on manuscript length and 
extent of graphic presentations. 

 
 TECHNICAL MEMORANDUM. 

Scientific and technical findings that are 
preliminary or of specialized interest, 
e.g., quick release reports, working 
papers, and bibliographies that contain 
minimal annotation. Does not contain 
extensive analysis. 

 
 CONTRACTOR REPORT. Scientific and 

technical findings by NASA-sponsored 
contractors and grantees. 

 CONFERENCE PUBLICATION. 
Collected papers from scientific and 
technical conferences, symposia, 
seminars, or other meetings sponsored 
or co-sponsored  
by NASA. 

 
 SPECIAL PUBLICATION. Scientific, 

technical, or historical information from 
NASA programs, projects, and 
missions, often concerned with subjects 
having substantial public interest. 

 
 TECHNICAL TRANSLATION. 

English-language translations of foreign 
scientific and technical material 
pertinent to  
NASA’s mission. 

 
Specialized services also include creating 

custom thesauri, building customized databases, 
and organizing and publishing research results. 

 
For more information about the NASA STI 

program, see the following: 
 
 Access the NASA STI program home 

page at http://www.sti.nasa.gov 
 
 E-mail your question via the Internet to 

help@sti.nasa.gov 
 
 Fax your question to the NASA STI 

Help Desk at (301) 621-0134 
 
 Phone the NASA STI Help Desk at   

(301) 621-0390 
 
 Write to: 
NASA STI Help Desk 
NASA Center for AeroSpace Information 
7121 Standard Drive 
Hanover, MD 21076-1320 

  
 



 

NASA Contractor Report CR-2011-216299 
 

 

 

Upgrade Summer Severe Weather Tool Phase III 
 

 

 
Leela Watson 
Applied Meteorology Unit 
Kennedy Space Center, Florida 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
National Aeronautics and 
Space Administration 

 
Kennedy Space Center 
Kennedy Space Center, FL 332899-0001 

 

April 2011 



 

 

 
Acknowledgements 

The author would like to thank Ms. Winnie Crawford of the Applied Meteorology Unit for lending her 
statistical expertise to this project and for providing sounding stability and flow regime parameters, and Mr. Mark 
Wheeler and Dr. William Bauman for their guidance and feedback on the overall direction of this task. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Available from: 
 
 

NASA Center for AeroSpace Information 
7121 Standard Drive 

Hanover, MD 21076-1320 
(301) 621-0390 

 
 
 

This report is also available in electronic form at 
http://science.ksc.nasa.gov/amu/ 

 

 



3 

Executive Summary 

The 45th Weather Squadron (45 WS) Commander’s morning weather briefing includes an assessment of the 
likelihood of local convective severe weather for the day. This forecast is provided in order to enhance protection of 
personnel and material assets of the 45th Space Wing, Cape Canaveral Air Force Station (CCAFS), and Kennedy 
Space Center (KSC). The severe weather elements produced by thunderstorms include tornadoes, strong surface 
winds and/or large hail. Forecasting the occurrence and timing of these phenomena during the warm season (May-
September) is challenging for 45 WS operational personnel. 

In the first phase of the task, the Applied Meteorology Unit (AMU) analyzed stability parameters and synoptic 
patterns from east-central Florida severe weather days during the warm season in the years 1989-2003 to determine 
which were important to severe weather development. A HyperText Markup Language (HTML)-based tool was 
created that helped determine the probability of issuing severe weather watches and warnings for the day by 
assigning weights to the important parameters and patterns based on their threat value. A Meteorological Interactive 
Data Display System (MIDDS)-based Graphical User Interface (GUI) replaced the HTML tool in a follow-on task. 
The new tool retrieved stability parameters and other information from MIDDS automatically, minimizing the 
forecaster's interaction with the tool. Later, the AMU updated the severe weather database with data from the years 
2004-2009, re-analyzed the data to determine the important parameters, made appropriate adjustments to the index 
weights depending on the results of the analysis, and updated the MIDDS GUI.  

For this task, the 45 WS requested the AMU upgrade the severe weather database by adding weather 
observations from the 2010 warm season, update the verification dataset with results from the summer of 2010, use 
statistical logistic regression analysis on the database and develop a new forecast tool, and update the MIDDS GUI 
with the new tool if it outperforms the current tool. The added data increased the period of record (POR) from 21 to 
22 years. With this update, the datasets included reported severe weather events, sounding stability parameters, and 
surface weather patterns and the upper jet patterns identified from surface and upper air maps. 

The AMU analyzed seven stability parameters that showed the possibility of providing guidance in forecasting 
the occurrence of severe weather for the 2010 season, calculated verification statistics for the Total Threat Score 
(TTS) in the 2010 season, and calculated warm season verification statistics. Analysis of the seven stability 
parameters indicate that adding the 2010 data had little effect on the tool’s overall severe weather predicting 
capability. On days that severe weather was reported, the TTS ranged from -11 to +20 compared to the 2006 
summer season verification in which the TTS was never below 0 on days when severe weather was reported. 
Finally, the Severe Weather Worksheet TTS did not verify well in the 2010 warm season, with a high False Alarm 
Rate (FAR) and low values for Probability of Detection (POD), Critical Success Index (CSI), and Heidke Skill 
Score (HSS). 

The AMU also performed statistical logistic regression analysis on the 22-year severe weather database. The 
candidate predictors included the flow regimes from the Florida rawinsondes, the placement of the upper-level jet, 
and seven stability parameters calculated from the XMR rawinsonde. The data were stratified into equation 
development and verification datasets and one equation for the warm season was developed. A process called 
screening regression was used to determine which candidate predictors to include in the equation in which an 
iterative technique was used to test each predictor’s ability to explain the variance in the predictand individually and 
in combination with other predictors. Four predictors were chosen for the warm season logistic regression equation.  

Four equation performance tests were conducted. The results indicated that the logistic regression equation did 
not show an increase in skill over the previously developed TTS. The equation showed less accuracy than the TTS at 
predicting severe weather, little ability to distinguish between severe and non-severe weather days, and worse 
standard categorical accuracy measures and skill scores over TTS. The results showed that the equation had some 
skill in predicting non-severe events, but no skill in predicting severe events. 

Based on the findings of this study and after reviewing the results with the 45 WS, a new tool was not 
developed based on the performance of the logistic regression equation. The previously developed TTS and MIDDS 
GUI were not updated due to the inability of the 2010 severe weather season data to help improve the tool. 
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1. Introduction 

The 45th Weather Squadron (45 WS) Commander’s morning weather briefing includes an assessment of the 
likelihood of local convective severe weather for the day. This forecast is provided in order to enhance protection of 
personnel and material assets of the 45th Space Wing, Cape Canaveral Air Force Station (CCAFS), and Kennedy 
Space Center (KSC). The severe weather elements produced by thunderstorms include tornadoes, convective surface 
winds  50 knots, and/or hail with a diameter  1 inch. Forecasting the occurrence and timing of these phenomena 
during the warm season (May – September) is challenging for 45 WS operational personnel.   

In the first phase of the task, the Applied Meteorology Unit (AMU) analyzed stability parameters and synoptic 
patterns from east-central Florida severe weather days during the warm season in the years 1989-2003 to determine 
which were important to severe weather development. The AMU then created a HyperText Markup Language 
(HTML)-based tool using the important parameters and patterns to help determine the probability of issuing severe 
weather watches and warnings for the day. The HTML tool was replaced with a Meteorological Interactive Data 
Display System (MIDDS)-based Graphical User Interface (GUI) in a follow-on task that retrieved stability 
parameters and other information from MIDDS automatically, minimizing the forecaster's interaction with the tool. 
Later, the AMU updated the severe weather database with data from the years 2004-2009, re-analyzed the data to 
determine the important parameters, made appropriate adjustments to the index weights based on the results of the 
analysis, and updated the MIDDS GUI.  

For this task, the 45 WS requested the AMU to: 

 Add severe weather reports and indices for the warm season May-September 2010 to increase the period of 
record to 22 years, 

 Use the daily severe weather forecast threat scores from 2009 and 2010 as the verification data of the tool, 

 Use logistic regression to determine the best predictors and provide a probability forecast, and then compare 
the performance of the logistic regression equations with the previous tool, and 

 Update the MIDDS GUI implementation of the tool with the new results if the logistic regression equations 
are successful. 

2. Previous Work 

In the initial Severe Weather Forecast Decision Aid task (Bauman et al. 2005), the AMU completed a 15-year 
climatological study of severe weather events and related severe weather atmospheric parameters. The period of 
record (POR) for the analysis was May-September, 1989-2003. Data sources included stability parameters derived 
from archived sounding data, local forecast rules used to set threat assessment thresholds, Cloud-to-Ground 
Lightning Surveillance System (CGLSS) used to differentiate between lightning and non-lightning days, surface and 
upper air maps, and two severe weather event databases covering east-central Florida used to identify reported 
severe weather. These datasets provided the foundation for analyzing stability parameters and synoptic patterns with 
the goal of developing an objective tool to aid in forecasting severe weather events. Based on the results from the 
analyses, an interactive web-based Severe Weather Decision Aid was developed to assist the duty forecaster by 
providing a level of objective guidance based on the stability parameters from the CCAFS morning sounding, 
CGLSS data, and synoptic-scale dynamics. The tool outputs the Total Threat Score (TTS), which is a measure of the 
level of severe weather threat. The higher (lower) the TTS, the greater (lesser) the chance of severe weather 
occurring. 

In a follow-on study (Wheeler 2009), the functionality of the web-based tool was migrated to MIDDS. A 
MIDDS GUI worksheet was created using Tool Command Language and its associated Tool Kit (Tcl/Tk). The GUI 
retrieves and calculates most of the daily sounding stability indices needed by the worksheet when opened. The 
forecaster is required to answer a few more subjective questions before the TTS is calculated and displayed. 

In the final follow-on study (Wheeler 2010), the AMU updated the existing severe weather tool by adding data 
from May-September, 2004-2009, creating a 21-year severe weather database. Data sources included local forecast 
rules, archived sounding data, surface and upper air maps, and two severe weather event databases covering east-
central Florida. The new POR for the analysis was May-September, 1989-2009. Results from this study showed a 



 

8 

greater ability to predict severe weather in the added years as compared to the original study. The MIDDS GUI was 
also updated and mouse-over help was added to allow the forecaster to quickly compute and analyze the daily TTS.  

3. Database 

For this work, the AMU updated the severe weather database with data from the 2010 warm season, increasing 
from a 21- to a 22-year climatological study of atmospheric stability indices and severe events from 1989-2010. To 
be consistent with previous work, the AMU collected the same data types and parameters used to update the severe 
weather database. Severe weather reports during 2010 were collected from the Storm Prediction Center (2009, SPC) 
and data from severe weather days in that period from the National Climatic Data Center (2010, NCDC) database. 
The sounding stability parameters were calculated from the 1000 UTC CCAFS soundings available from the 
National Oceanic and Atmospheric Administration’s (NOAA)/Earth System Research Laboratory (ESRL) and from 
the objective portion of the daily Severe Weather Worksheet in MIDDS. Also, the 200 mb charts were analyzed to 
identify the placement and characteristics of the upper-level jet. With this update, the datasets included reported 
severe weather events, sounding stability parameters, and surface weather patterns and the upper jet patterns 
identified from surface and upper air maps. Each data type proved to have some relevance to forecasting the threat 
of convection in east-central Florida and at KSC/CCAFS. 

3.1 Severe Weather Events 

Severe weather events for this study included tornadoes, convective surface winds ≥ 50 knots (≥ 26 m s-1), 
and/or hail with a diameter ≥ 1 inch (≥ 2.54 cm) that were observed in east-central Florida. The previous studies 
used a ≥ ¾ inch diameter criterion for hail, however, the National Weather Service changed the minimum size for 
severe hail from ¾” to 1” in January 2010. Therefore, the POR prior to the 2010 summer season reflected the ¾” 
criterion and the new 1” hail criterion was used for the 2010 summer season. The 2010 database contained 16 days 
with reported severe weather, which included three tornadoes, six hail events, and 15 high wind events. 

It is important to note that the database contains only those severe weather events reported by human observers. 
Severe weather events can only be recorded when observed by people in the vicinity, and then only if the proper 
authorities are notified. Therefore, severe weather days are more accurately described as “reported” severe weather 
days. To determine relationships between the data and severe weather occurrence for this and previous studies, the 
AMU had to assume that severe weather only occurred on reported severe weather days.  

3.2 Sounding Parameters 

A thorough analysis of atmospheric stability based on a local upper air sounding is needed for any convective 
forecast. A listing of the sounding stability indices (bold) and additional calculated parameters from MIDDS used in 
the TTS calculation is shown in Table 1. These sounding parameters are calculated in MIDDS from the CCAFS 
rawinsonde and are readily available.  

3.3 Synoptic Weather Patterns 

The synoptic weather patterns investigated by the AMU included the position of the upper-level jet streak if one 
existed and the position of the surface high pressure ridge axis over east-central Florida. It is commonly known that 
upper-level divergence and/or the left-exit and, to a lesser degree, right-entrance quadrant of a jet streak in the 
vicinity of convective systems can help produce severe weather. The 45 WS forecasters often analyze the position of 
the surface high pressure ridge axis protruding westward from the Bermuda high pressure center as an indicator for 
convection occurrence. It is generally known that if the surface ridge is south of the KSC/CCAFS area the 
probability for convection is increased due to the low-level convergence generated from the southwesterly flow 
around the ridge interacting with the east coast sea breeze off the Atlantic Ocean and the west coast sea breeze off 
the Gulf of Mexico. 

 



9 

Table 1. The eight stability parameters (in bold font) that showed the possibility of providing guidance in 
forecasting severe weather and the six other sounding parameters in the severe weather database and the 
equations used in their calculation. 

Index Acronym Definition 

LI Lifted Index = (T500 – T*) 

T* = Temperature of a parcel characterized by the mean Td in the lowest 3000 ft and 
the forecast maximum surface temperature if it were lifted dry adiabatically to 
saturation and then moist adiabatically to 500 mb. 

KI K Index = (T850 – T500) + Td850 – (T700 – Td700) 

TT Total Totals = (T850 – T500) + (Td850 – T500) 

SSI Showalter Stability = Index (T500 – T*) 

T* = Temperature a parcel characterized by the T850 and Td850 would have if it were 
lifted dry-adiabatically to the LCL and then moist-adiabatically to 500 mb. 

CT Cross Totals = (Td850 – T500) 

TI Thompson Index = KI – LI 

PW Precipitable water in mm in the layer from the surface to 500 mb 

CAPE FMaxT CAPE calculated using the forecast maximum temperature (FMaxT) for the day 
instead of the surface temperature in the morning 

10070RH Average Relative Humidity in percent (%) from 1000-700 mb 

LLJ Low Level Jet below 5000 ft (Wind direction and speed) 

INV Height of Inversion below 8000 ft 

T850 The sounding temperature at 850 mb 

TDif The difference between forecast maximum and convective temperatures 

MDPI Microburst Day Potential Index 

4. Data Analysis Results 

The AMU gathered severe weather reports for 2010 from SPC and data for those severe weather days from 
NCDC. The 200 mb charts were analyzed to identify placement and characteristics of any jet streaks overhead. The 
Florida flow regime patterns that identified the position of the surface high pressure ridge axis over east-central 
Florida were also added to the severe weather database. The datasets were integrated and compared to the severe 
weather reports of hail, high wind, and tornadoes to determine what the parameter values were on each of the severe 
weather event days.  

The AMU analyzed seven of the eight stability parameters that showed the possibility of providing guidance in 
forecasting the occurrence of severe weather in the first phase of this task (Bauman et al. 2005). The parameter 
CAPE FMaxT was not calculated for the years 2004-2009 and was therefore not analyzed in this phase of the task. 
The parameters TT, KI, LI, TI, CT, SSI and PW were analyzed to determine if they increased the severe weather 
forecast capability of the tool in the 2010 data and in all 22 years (1989-2010) combined. Results indicate that 
adding the 2010 data had no effect on the forecast capability of the tool for TT, KI, PW, SSI, and CT. The forecast 
capability decreased when adding the 2010 LI and TI data. Overall, there was minimal change in the tool’s overall 
severe weather predicting capability. The relationship between each stability parameter and threshold criteria for the 
severe weather threat was calculated for severe and non-severe days. The results for each of these seven parameters 
are detailed below. 
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4.1 Total Totals (TT) 

The TT thresholds specify a low threat for severe weather when TT ≤ 45, a medium threat when 46 ≤ TT ≤ 48, 
and a high threat when TT > 48. When TT was > 48, a severe weather event was reported in 13% of the 2010 warm 
season days. This slightly decreased the 21-year value of 34%. The 22-year value decreased to 33%. Figure 1 
displays the threat levels of Low, Medium and High with the occurrence/non-occurrence of severe weather for the 
22-year POR, while Figure 2 displays the same data, but shows the individual TT values for each day. It is evident 
that TT poorly discerns severe from non-severe weather for our POR. 
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Figure 1. Stacked column graph of TT thresholds. The number of severe/non-severe occurrences for 
the Low, Medium and High threat thresholds for all 22 years in the severe weather database. 
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Figure 2. Scatter plot of probability of occurrence vs. TT for both the non-severe and severe days for 
all 22 years in the severe weather database. 
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4.2 K-Index (KI) 

The KI thresholds values indicate a low threat for severe weather when KI < 26, a medium threat when 26 ≥ KI 
≥ 28, and a high threat when KI > 28. When KI was > 28, a severe weather event was reported in 16% of the 2010 
days. This did not alter the 21-year value of 18%. The 22-year value remained at 18%. Figure 3 displays the threat 
levels of Low, Medium and High with the occurrence/non-occurrence of severe weather for the 22year POR, while 
Figure 4 displays the same data, but shows the individual KI values for each day. It is evident that KI poorly 
discerns severe from non-severe weather for our POR. 
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Figure 3. Same as Figure 1 except for KI. 
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Figure 4. Same as Figure 2, except for KI. 
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4.3 Lifted Index (LI) 

The LI thresholds values indicate a low threat for severe weather when LI ≥ -2, a medium threat when-3 ≥ LI ≥ 
-5, and a high threat when LI < -5. The LI was never < -5 in the 2010 dataset and, therefore, slightly decreased the 
percentage of severe weather in the 22-year POR from 31% to 30%. Figure 5shows the LI Low, Medium and High 
threat distribution for all years in the severe weather database, while Figure 6 displays the same data, but shows the 
individual LI values for each day. LI also poorly discerns severe from non-severe weather for our POR. 
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Figure 5. Same as Figure 1 except for LI. 
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Figure 6. Same as Figure 2, except for LI. 
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4.4 Thompson Index (TI) 

The TI specifies a low threat when TI < 25, a medium threat when 25 ≤ TI ≤ 34, a high threat when 35 ≤ TI ≤ 
39, and a very high threat when TI ≥ 40. The TI value was > 40 on 4 days in the 2010 season and severe weather 
was not reported on any of those days. The percent occurrence decreased to 25% for the 22-year POR over the 
previous 21-year value of 26%. Figure 7 shows the severe weather threat distribution for all years in the severe 
weather database, while Figure 8 displays the same data, but shows the individual TI values for each day. As above, 
TI poorly discerns severe from non-severe weather in our POR. 
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Figure 7. Same as Figure 1 except for TI and the fourth threat category Very High. 
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Figure 8. Same as for Figure 2, except for TI. 
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4.5 Cross Totals (CT) 

The CT thresholds indicate a low threat when CT ≤ 19, a medium threat when 20 ≤ CT ≤ 21, a high threat when 
22 ≤ CT ≤ 23, and a very high threat when CT ≥ 24. When CT was ≥ 24, a severe weather event was reported in 
20% of the 2010 days. This did not alter the 21-year value of 31%. The overall 22-year value remained at 31%. 
Figure 9 displays the threat levels of Low, Medium, High, and Very High with the occurrence/non-occurrence of 
severe weather for the 22-year POR, while Figure 10 displays the same data, but shows the individual CT values for 
each day. It is evident that CT poorly discerns severe from non-severe weather for our POR. 

127 145 99
49

957 702 518
110

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Low (= 19) Med (20 to 21) High (22 to 23) Very High (= 24)

P
ro
b
ab
il
it
y 
o
f 
O
cc
u
rr
en
ce

Threat

Cross Totals

Severe Non-Severe

1084                          847                             617                             159

 

Figure 9. Same as Figure 7 except for CT. 
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Figure 10. Same as Figure 2, except for CT. 
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4.6 Showalter Stability Index (SSI) 

The SSI thresholds indicate a low threat when SSI ≥ 3, a medium threat when 2 ≥ SSI ≥ -2, and a high threat 
when SSI < -2. The 2010 severe weather database confirmed that SSI is a good severe weather predictor. When SSI 
< -2, severe weather was reported in central Florida 33% of the time. The 22-year POR value remained the same as 
the previous work at 37%. Figure 11 shows the SSI Low, Medium and High threat distribution for all years in the 
severe weather database, while Figure 12 displays the same data, but shows the individual SSI values for each. SSI 
poorly discerns severe from non-severe weather for our POR. 
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Figure 11. Same as Figure 1 except for SSI. 
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Figure 12. Same as Figure 2, except for SSI. 
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4.7 Precipitable Water (PW) 

The PW thresholds indicate a low threat when PW < 1.0 in, a medium threat when 1.0 in ≤ PW ≤ 1.75 in, and a 
high threat when CT > 1.75 in. When PW was > 1.75, a severe weather event was reported in 13% of the 2010 days. 
This did not alter the 21-year value of 15%. The overall 22-year value remained at 15%. Figure 13 displays the 
threat levels of Low, Medium, and High with the occurrence/non-occurrence of severe weather for the 22-year POR, 
while Figure 14 displays the same data, but shows the individual PW values for each day. As above, PW does not 
discern severe from non-severe weather in our POR. 
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Figure 13. Same as Figure 1 except for PW. 
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Figure 14. Same as Figure 2, except for PW. 
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5. 2010 Verification Results 

The TTS used for verification was developed from the first severe weather study (Bauman et al. 2005). The 
AMU calculated verification statistics for the TTS from an independent dataset created by the 45 WS forecasters and 
AMU personnel during the 2010 warm season. When the 45 WS forecasters/AMU personnel completed the Severe 
Weather Worksheet GUI and computed the daily TTS, a text file was saved that contained their answers to the 
subjective questions and the sounding stability parameters for the day. This allowed a comparison of the daily TTS 
with reported severe weather events in 2010.  

From 3 May to 30 September 2010, the AMU and 45 WS forecasters completed 132 worksheets. Total Threat 
Scores ranged from -23 to 20. Severe weather was reported in east-central Florida on 16 of the 153 days. Figure 15 
shows the TTS values color-coded for reported severe weather. On days that severe weather occurred, the TTS 
ranged from -11 to 20. During the 2006 warm season verification (Bauman 2006), the TTS was never below 0 on 
days when severe weather was reported. 

The 2010 warm season was one of the hottest and driest summers on record across east-central Florida. This 
was due to the placement and strength of the surface Atlantic ridge and high pressure ridge aloft. This resulted in 
few severe weather reports during the 2010 summer season and may account for the wide range of TTS values when 
severe weather was reported over the 2010 season.  
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Figure 15. Total Threat Score versus date from 1 May – 30 September 2010. Red lines represent days with reported 
severe weather, blue lines represent days with no reported severe weather. 

The AMU computed verification statistics for the 2010 warm season. The standard 2x2 contingency table 
shown in Table 2 was used to calculate the statistics and scores described in the last row of Table 2:  

 The False Alarm Rate (FAR) is the fraction of ‘yes’ forecasts that are incorrect, 

 Probability of Detection (POD) is the fraction of ‘yes’ forecasts that are correct, 

 Critical Success Index (CSI) measures the fraction of observed or forecast events that were correctly 
predicted, 

 Heidke Skill Score (HSS) is the probability of a correct ‘yes’ forecast by random chance, and 

 True Skill Statistic (TSS) measures how well the forecast separated the ‘yes’ events from the ‘no’ events 
compared to random chance, but with an assumption of an unbiased forecast. 
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Table 2. The standard contingency table 
used for forecast verification.  

Observed Event 

Yes No 

Forecast Event 
Yes a b 

No c d 

N = a + b + c + d 

False Alarm Rate (FAR) = b/(a+b) 

Probability of Detection (POD) = a/(a+c) 

Critical Success Index (CSI) = a/(a+b+c) 

Heidke Skill Score (HSS) = [ (a+d) - E ]/( N-E ) 

E = [(a+c)(a+b)+(b+d)(c+d)]/N, N=a+b+c+d 

True Skill Statistic (TSS) =a/(a+c) – b/(b+d) 

 

Table 3. Warm season 2010 
TTS Verification Statistics 

Observed Severe FAR 0.46 

Yes No POD 0.44 

Forecast 
Severe 

Yes 7 6 CSI 0.32 

No 9 110 HSS 0.42 

 TSS 0.39 

 

 

Figure 16. Map of Florida showing the six counties (shaded in yellow) included in the 
severe weather events database. The location of KSC and CCAFS are shown on the map. 
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Table 3 shows the contingency table statistics for the 2010 warm season. The TTS forecast threshold value for 
the contingency table was chosen based on the results of the 2006 summer season verification. If the TTS was < 5 it 
was considered a No forecast and if ≥ 5 it was a Yes forecast. The east-central Florida severe weather verification 
area (Figure 16) included three coastal counties (Brevard, Volusia, Indian River) and three inland counties 
(Seminole, Orange, Osceola), all of which are typically in the same large-scale air mass as KSC/CCAFS on most 
warm season days. If severe weather was reported in these Florida counties, that was classified as observed Yes. The 
Severe Weather Worksheet TTS did not verify well in the 2010 warm season, with a high FAR and low values for 
POD, CSI and HSS. However, it should be noted again that the 2010 warm season was atypical being much warmer 
and drier with much less severe weather than normal. 

Figure 17 displays a scatter plot of probability of occurrence/non occurrence of severe weather vs. the TTS for 
both the 2009 and 2010 summer seasons. There were 36 severe weather and 186 non-severe weather days for which 
the TTS was calculated. The results show that TTS was a fairly good indicator of severe weather, particularly when 
the value was ≥5. When TTS was ≥5, the occurrence of non-severe weather was 1% or less. Based on these results 
and those from Section 4, it is evident that the final daily value of the TTS is driven by the subjective questions that 
the forecaster is required to answer as the daily stability indices poorly differentiated severe from non-severe 
weather.  
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Figure 17. Scatter plot of probability of occurrence vs. TTS for both the non-severe and severe days 
for the 2009 and 2010 seasons in the severe weather database. 
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6. Logistic Regression Analysis 

The AMU was tasked to perform statistical logistic regression analysis on the 22-year severe weather database 
and possibly develop a new forecast tool. There were three major steps in this portion of the task: 

 Determine the elements of the equation, 

 Develop the logistic regression equation, and 

 Determine the equation performance. 

To accomplish this, the AMU followed procedures outlined by Lambert and Wheeler (2005). 

6.1 Elements of the Logistic Regression Equation 

The necessary elements to create the logistic regression equation include a predictand and candidate predictors. 
The predictand is the element to be predicted. The SPC and NCDC severe weather reports provided the occurrence 
of severe weather in the area and were used to create the predictand. The predictand value was set to “1” if severe 
weather occurred within the six east-central Florida counties on a specific day and set to “0” if no severe weather 
occurred. As mentioned previously, an assumption had to be made that severe weather only occurred on reported 
severe weather days. The candidate predictors included the flow regimes from the Florida rawinsondes, the 
placement of the upper-level jet, and seven stability parameters calculated from the XMR rawinsonde. 

6.1.1 Flow Regime Probabilities 

Probabilities of severe weather occurrence based on flow regime pattern for each day were calculated using the 
severe weather binary predictand. The number of days each regime occurred was compared to the severe weather 
predictand to see how many of those days reported severe weather. The probability was calculated by dividing the 
number of severe weather days within a particular regime by the total number of days the regime occurred. 

6.1.2 Upper-level Jet Probabilities 

Probabilities of severe weather occurrence based on the placement of the upper-level jet were calculated in the 
same manner as the flow regime probabilities. The number of days each jet pattern occurred was compared to the 
severe weather predictand to see how many of those days reported severe weather. The probability was calculated 
by dividing the number of severe weather days with a particular jet pattern by the total number of days the particular 
pattern occurred. 

6.1.3 Stability Index Parameters 

The stability indices chosen as candidate predictors were based on the results from the previous phases of this 
work. All seven indices showed some skill in predicting severe weather. The stability indices were calculated for 
each day in the database from the 1000 UTC XMR sounding and are available to the forecasters through MIDDS. 
The stability index candidate predictors included the 

 Total Totals (TT), 

 Cross Totals (CT), 

 K-Index (KI), 

 Lifted Index (LI), 

 Thompson Index (TI), 

 Showalter Stability Index (SSI), and 

 Precipitable water (PW). 

6.2 Development of the Logistic Regression Equation 

The amount of data available for equation development was critical to the reliability of the new equation. Data 
had to be stratified into equation development and verification datasets, which limited the amount of data available 
for equation development. Therefore, the amount of available data was determined before development began. After 
determining that an appropriate amount of data was available, one equation for the warm season was developed.  
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6.2.1 Data Availability 

The World Meteorological Organization (1992, WMO) states that there should be at least 250 events in the 
dataset in order to derive stable statistical relationships. There are 153 days in the warm season, which equates to 
3366 days over the 22-year POR. However, sounding data were not available for every day in the POR. Data were 
available for 3192 days or 95% of the time. Of these days, there were 422 reported severe weather days. This was 
sufficient to satisfy the WMO standard after stratifying the full dataset into development and verification datasets. 

6.2.2 Development and Verification Datasets 

The candidate predictors and predictand were stratified into development and verification datasets. The 
development dataset was required to contain enough samples so that the resulting logistic regression equation was 
stable. The verification dataset was needed for equation testing to ensure that the equation would perform 
sufficiently in an operational setting. If the performance was much worse with the verification data, this would 
indicate that the development dataset was too small or there were too many predictors and the equations were fit too 
strongly to the development data.   

The daily TTS values were archived for the years 2009 and 2010. Therefore, these two years were chosen as the 
verification dataset in order to compare the accuracy of the equation vs. the TTS. This left 20 years of data (1989-
2008) for the development dataset. The development dataset contained 380 severe weather events, while the 
verification dataset contained 42. 

6.2.3 Equation Development 

The development of the logistic regression equation follows the procedure outlined in Lambert and Wheeler 
(2005). One logistic regression equation was developed using candidate predictors determined from the previous 
phases of this task.   

6.2.3.1 Logistic Regression 

Choosing the correct statistical regression method is essential when creating a reliable probability forecast tool. 
Logistic regression is deemed most appropriate when using data with a predictand that is binary (Wilks 2006). 
Logistic regression is represented by the equation 

,            (1) 

where y is the predicted value, x1…xk are the set of predictors, and b1…bk are the coefficients for the corresponding 
predictors. For this task, y represents the probability of a severe weather event occurring and is bound between the 
values 0 and 1. The candidate predictors for x1…xk are those listed in Sections 6.1.1, 6.1.2, and 6.1.3 and the method 
for determining the corresponding coefficients is outlined in Section 6.2.3.2. A detailed description of logistic 
regression can be found in Section 4.2.1 of Lambert and Wheeler (2005). 

6.2.3.2 Predictor Selection 

Following Lambert and Wheeler (2005), predictor selection was conducted using the S-PLUS® statistical 
software (Insightful Corporation 2005), which has a built-in logistic regression function. The software also 
determines each predictor’s contribution to the reduction in variance of the predictand, called the reduction in the 
residual deviance. For logistic regression, the residual deviance is used to assess the fit of the overall model. The 
smaller (larger) the deviance is the better (worse) the fit of the model. A detailed description of residual deviance 
can be found in Section 4.2.2 of Lambert and Wheeler (2005). 

A process called screening regression was used to determine which candidate predictors to include in the 
logistic regression equation. In this approach, predictors were added to the equation one at a time. At each step, the 
candidate predictor that created the biggest reduction in the residual deviance was chosen as the next predictor in the 

equation. Selection began with the prediction equation  (NULL model), where the only term in Equation 

(1) is the intercept. In the next step, each of the seven candidate predictors was added as a lone predictor in Equation 
1 resulting in seven single predictor equations. The predictor that caused the largest reduction in the residual 
deviance from the NULL model was chosen as the first predictor in the equation. At this stage, the prediction 
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equation is . Next, the other six candidate predictors were added individually to the equation 

creating a set of two-predictor equations. The second predictor that caused the largest reduction in residual deviance 
was chosen as the second predictor. This continued for all candidate predictors. It is important to note that it is 
generally not useful to include all potential predictors in a final equation since most predictor variables are mutually 
correlated so that the full set of predictors includes redundant information (Wilks 2006). This could create 
unrealistic results. 

Figure 18 shows the percent reduction in residual deviance from the NULL model as each predictor was added. 
The TT reduced the residual deviance by the most (~8%) and was chosen as the first predictor in the equation. The 
second predictor was the flow regime probabilities, which brought the total reduction of residual deviance to ~13%. 
The LI and jet probabilities were the third and fourth predictors in the equation, respectively, producing the final 
reduction in residual deviance of 15%.  

There was no sufficient fifth predictor for the equation. In other words, no other candidate predictor reduced the 
residual deviance by a significant amount, thereby not providing added value for predicting severe weather. The 
regression coefficients for each predictor, b1…bk, should maintain the correct sign during each step described above. 
A positive regression coefficient means that the predictor increases the probability of the outcome, while a negative 
coefficient means that the predictor decreases the probability of that outcome. For this study, KI, TI, CT, TI, PW, 
flow regime probabilities, and jet probabilities should have positive coefficients indicating that larger (smaller) 
values of each variable increase (decrease) the chance of severe weather. The variables LI and SSI should have 
negative coefficients indicating that larger (smaller) values decrease (increase) the chance of severe weather. None 
of the fifth candidate predictor coefficients had the correct sign, indicating that none of the predictors added value 
for predicting severe weather. 
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Figure 18. The total percent reduction in residual deviance from the NULL model as each predictor was added to the 
equation using the development dataset. 
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6.3 Logistic Regression Equation Performance 

Forecast probabilities were produced using the four predictors from the verification dataset. These probabilities 
were compared with the binary severe weather observations in the verification dataset using four tests that measure 
forecast performance. The tests included 

 Mean Squared Error, which evaluates equation performance, 

 Brier Skill Score, which measures equation performance against other forecast methods, 

 Distributions of the probability forecasts for days with and without severe weather, and 

 Contingency table statistics. 

6.3.1 Mean Squared Error 

The Mean Squared Error (MSE) is the mean of the squared differences between the forecast probabilities and 
the observations. The MSE is given by 

           (2) 

where n is the number of forecast/observation pairs, pi is the probability calculated from the equation, and oi is the 
corresponding binary severe weather observation (Wilks 2006). The MSE for a perfect forecast is 0, with larger 
MSE indicating decreasing accuracy of the forecast. 

The MSE was computed for the four-predictor equation using the development and verification datasets. The 
MSE for the full development dataset was 0.10, which indicates skill in predicting severe weather. However, when 
the data was split into severe and non-severe events, the MSE was 0.61 and 0.03, respectively. Similarly, the MSE 
for the full verification dataset was 0.01, but 0.59 and 0.02 for severe and non-severe events, respectively. These 
results indicate that the equation was biased towards predicting non-events and failed to adequately predict severe 
weather events. The MSE was also computed for the TTS using the verification dataset. Based on previous work by 
Bauman (2006) and Wheeler (2010), a TTS ≥ 5 was used as the threshold for severe weather where a TTS < 5 was 
assigned a 0 (a No forecast) and a TTS ≥ 5 was assigned a 1 (a Yes forecast). The observation was subtracted from 
the TTS forecast value, the result was squared, and then the final mean was taken of all the squared differences. The 
MSE for the full verification dataset was 0.07 and was 0.26 and 0.03 for severe and non-severe events, respectively. 
Based solely on MSE, the TTS was a better predictor of severe weather events than the logistic regression equation.  

6.3.2 Brier Skill Score 

The Brier Skill Score (BSS) measures the improvement in skill of the logistic regression equation against a 
reference forecast. It is calculated using the MSE as 

         (3) 

where MSEeqn is the MSE of the equation being tested, MSEref is the MSE of the reference forecast method, and 
MSEperfect is the MSE of a perfect forecast, which is always 0. The BSS denotes a percent improvement 
(degradation) in skill of the equation over the reference forecast when it is positive (negative). The calculated TTS 
for the verification dataset was used for the reference forecast.  

The BSS values for the verification dataset were -57% for the full dataset, -131% for the severe weather events, 
and 34% for non-severe weather. As with the MSE, these results indicate that the logistic regression equation is 
biased towards predicting non-events as the percent improvement for the non-severe weather is large. However, the 
percent degradation for predicting severe events is quite large, again indicating that TTS is a better tool for 
predicting severe weather. 
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6.3.3 Probability Distributions 

The equation probability forecasts from the verification dataset were stratified by severe and non-severe 
weather days. The distribution of the probability values was calculated for each stratification. Figure 19 shows the 
probability distribution for severe days (red curve) and non-severe days (blue curve). If the equation performance 
was considered “good”, the red (blue) curve should have a minimum (maximum) in the lower probability values that 
increase to a maximum (minimum) at the higher values.  

The non-severe weather days have a peak frequency near 65% at probability values of 0.1 and then decrease to 
near 0 at 0.6. It shows a high percentage of low probabilities for non-severe events and a low percentage of high 
probabilities as expected for good performance. The severe weather days have a small peak near 30% at probability 
values near 0.2 followed by a dip and then another small peak near 15% at probability values at 0.4. This indicates 
that the equation performed poorly for severe weather days. The maximum at 0.2 and minimum at 0.6 suggests the 
equation is under-forecasting severe weather events. It should be noted that forecast probabilities for both severe and 
non-severe days were never greater than 0.7. 
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Figure 19. Forecast probability distributions for severe (red) and non-severe (blue) days in the verification data. The 
y-axis values are the frequency of occurrence of each probability value, and the x-axis values are the forecast 
probability values output by the equation. 

6.3.4 Contingency Table Statistics 

Contingency table statistics were computed for the verification dataset TTS and equation probabilities. As in 
Section 5, the standard 2x2 contingency table shown in Table 2 was used to calculate the statistics and scores. The 
contingency table statistics were computed using the same threshold values for TTS as in Section 5: if < 5 it was a 
No forecast and if ≥ 5 it was a Yes forecast. The procedure outlined by Wilks (2006) was used to choose the proper 
threshold values for the equation probabilities. Figure 20 shows the CSI and Bias values for the equation 
probabilities over a range of equation output probability values from 0.05 to 0.7 in increments of 0.05. The cutoff 
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value that had the maximum value of CSI and a bias value closest to 1 (no bias) was chosen. The resulting 
probability cutoff was 0.35 indicated by the vertical black line in Figure 20.  

Table 4 and Table 5 show the contingency table statistics for the TTS and equation probabilities for the 
verification dataset, respectively. The POD and CSI are 1 for a perfect forecast and 0 for no skill, and vice versa for 
FAR. The HSS and TSS are 1 for a perfect forecast, 0 for performance equal to a random forecast, and < 0 for 
performance worse than that of a random forecast. It is evident that the TTS (Table 4) outperforms the equation 
(Table 5) in every computed statistic.  
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Figure 20. Graph showing the CSI (blue) and bias (red) values for the equation probabilities over a range of equation 
output probability values from 0.05 to 0.7 in increments of 0.05. The vertical black line shows the resulting 
probability cutoff that had the maximum value of CSI and a bias value closest to 1. 

 

Table 4. TTS Verification 
Dataset Statistics 

Observed Severe FAR 0.23 

Yes No POD 0.73 

Forecast 
Severe 

Yes 30 9 CSI 0.60 

No 11 176 HSS 0.70 

 TSS 0.68 

 

Table 5. Equation 
Probabilities Verification 
Dataset Statistics 

Observed Severe FAR 0.42 

Yes No POD 0.35 

Forecast 
Severe 

Yes 15 11 CSI 0.28 

No 28 238 HSS 0.36 

 TSS 0.30 
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6.3.5 Equation Performance Summary 

All four equation performance measures indicated that the logistic regression equation did not show an increase 
in skill over the previously developed TTS. The equation showed less accuracy than the TTS at predicting severe 
weather, little ability to distinguish between severe and non-severe weather days, and worse standard categorical 
accuracy measures and skill scores over TTS. The MSE, BSS, and probability distributions show that the equation 
had some skill in predicting non-severe events, but no skill in predicting severe events.  

The overriding difference between the logistic regression equation and the TTS is the inclusion of subjective 
questions and answers in computing the final value for the TTS. The logistic regression equation only takes into 
account the objective stability parameter values. Bauman et al. (2005) found that persistence, squall line activity, 
moisture boundaries, and sea breeze and boundary collisions were important for severe weather development and 
included questions to account for these phenomena when calculating the TTS. The results of this analysis emphasize 
the importance of these subjective factors.  

7. Summary 

This report presented a severe weather forecasting tool developed from a 22-year climatological study of severe 
weather events and related severe weather atmospheric parameters. Data sources included archived sounding data 
from the 1000 UTC XMR soundings, surface and upper air maps, and two severe weather event databases covering 
east-central Florida. The NCDC and SPC severe weather events databases were used to identify days with reported 
severe weather. These datasets provided the foundation for analyzing the stability parameters and synoptic patterns 
that were used to develop the original objective tool to aid in forecasting severe weather events. The severe weather 
database was upgraded by adding weather observations from May-September 2010. The new period of record for 
the analysis was May-September, 1989-2010. 

Stability parameter analysis results indicate that adding the 2010 data had a minimal effect on the severe 
weather forecast potential of the tool. The AMU calculated verification statistics for the TTS values calculated by 
the 45 WS forecasters and AMU personnel in the 2010 warm season. On days that severe weather occurred, the TTS 
ranged from -11 to 20 compared to the 2006 summer season verification in which the TTS was never below 0 on 
days when severe weather was reported. Standard contingency table statistics showed a high FAR and low POD, 
CSI and HSS. The 2010 warm season was one of the hottest and driest summers on record across east-central 
Florida due to the placement and strength of the surface Atlantic ridge and high pressure ridge aloft. This resulted in 
few severe weather reports during the 2010 summer season and accounted for the wide range of TTS values when 
severe weather was reported over the 2010 season.  

The AMU created a logistic regression equation that predicted the probability of severe weather occurrence for 
the day in east-central Florida. The equation was tested using four methods described in Section 6.3.1 - 6.3.4. The 
results from the tests show a degradation in skill in predicting severe weather over the TTS. The equation also 
showed less accuracy than the TTS at predicting severe weather, little ability to distinguish between severe and non-
severe weather days, and worse standard categorical accuracy measures and skill scores over TTS. 

Based on the findings of this study and after reviewing the results with the 45 WS, a new tool was not 
developed based on the performance of the logistic regression equation. The previously developed TTS and MIDDS 
GUI were not updated due to the inability of the 2010 severe weather season data to help improve the tool. 
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List of Acronyms 

 

10070RH 1000 to 700 mb average Relative 
Humidity 

45 WS 45th Weather Squadron 

AMU Applied Meteorology Unit 

BSS  Brier Skill Score 

CAPE FMaxT Cape using Maximum forecast 
Temperature 

CCAFS Cape Canaveral Air Force Station 

CGLSS Cloud-to-Ground Lightning 
Surveillance System 

CSI Critical Success Index 

CT Cross Totals 

ESRL Earth System Research Laboratory 

FAR False Alarm Rate 

HTML              HyperText Markup Language 

HSS Heidke Skill Score 

GUI Graphical User Interface 

KSC Kennedy Space Center 

INV Height of Inversion 

KI K-Index 

LI Lifted Index 

LLJ Low Level Jet 

MDPI Microburst Day Potential Index 

MIDDS Meteorological Interactive Data 
Display System 

MSE Mean Squared Error 

NOAA National Oceanic and Atmospheric 
Administration 

NCDC National Climatic Data Center 

POD Probability of Detection 

POR Period of Record 

PW Precipitable Water 

SPC Storm Prediction Center 

SSI Showalter Stability Index 

T850 Temperature at 850 mb  

Tcl/Tk Tool Command Language/Tool Kit 

TDif Forecast maximum temperature – 
convective temperature 

TI Thompson Index 

TSS True Skill Statistic 

TT Total Totals Index 

TTS Total Threat Score 

WMO World Meteorological Organization
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NOTICE 

Mention of a copyrighted, trademarked or proprietary product, service, or document does not constitute endorsement 
thereof by the author, ENSCO Inc., the AMU, the National Aeronautics and Space Administration, or the United 
States Government. Any such mention is solely for the purpose of fully informing the reader of the resources used to 
conduct the work reported herein. 

 

 

 


