A Comparison of Tropical Storm (TS) and Non-TS Gust factors for Assessing Peak Wind Probabilities at the Eastern Range

Francis J. Merceret
NASA KSC Weather Office

Winifred C. Crawford
NASA Applied Meteorology Unit/ ENSCO, Inc.
Overview

- Motivation and Goals
- Data sets
- Gust factor (GF) definition
- Data preparation
- Comparison results
- Conclusion
Motivation and Goals

• Motivation:
 – Peak winds important for space operations, difficult to forecast
 – Model for TS peak winds developed by Merceret (2009)
 – AMU task: create non-TS peak wind climatologies/probabilities

• Goals:
 – Compare TS to extratropical (non-TS) GF over same range of wind speeds and heights
 – Determine if TS model can be adapted to non-TS environment
Data: Towers

- Prop/vane anemometers
- Sensors on opposite sides of each tower
- Automated and manual QC
- **Same** towers, **Same** sensors, **Same** site: eliminates location and instrument differences

Wind Tower Sensor Heights

<table>
<thead>
<tr>
<th>Tower #</th>
<th>#2</th>
<th>#6</th>
<th>#110</th>
<th>#313</th>
</tr>
</thead>
<tbody>
<tr>
<td>54 ft</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>90 ft</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145 ft</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>162 ft</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>204 ft</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>295 ft</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>394 ft</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>492 ft</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Data: Stratifications

• TS data set:
 – Hurricanes Frances and Jeanne (September 2004)
 • Towers 2, 110, and 313
 • Empirical models for GF μ and σ as function of speed and height
 – Validated with Hurricane Wilma data (October 2005)

• Non-TS data set
 – Cool-season (October – April) 1995 – 2007
 – Towers used for launch decisions
 – Stratifications for TS comparison study:
 • NE wind sector (0° to 60°)
 • Daytime data
 • Mean speeds \geq 15 kt
How Gust Factor is Determined

Mean: 22.5 Peak: 25.9 GF: 1.15

Wind Speed (Kt) vs. Time (sec) graph

- 1 Sec Wind
- Mean Wind
- Peaks

GF: Gust Factor
Comparison: Mean GF

- Non-TS GF < TS GF at same height and wind speed
- Consistent with most previous results

<table>
<thead>
<tr>
<th>Tower</th>
<th>Speed Bin (kt)</th>
<th>54 ft</th>
<th>90 ft</th>
<th>145 ft</th>
<th>162 ft</th>
<th>204 ft</th>
<th>295 ft</th>
<th>394 ft</th>
<th>492 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>20</td>
<td>0.951</td>
<td>0.939</td>
<td>0.932</td>
<td>0.940</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.978</td>
<td>0.978</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>1.010</td>
<td>0.863</td>
<td>0.862</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.878</td>
<td>0.878</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>20</td>
<td>0.947</td>
<td>0.915</td>
<td>0.911</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.917</td>
<td>0.906</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>313</td>
<td>20</td>
<td>0.893</td>
<td>0.912</td>
<td>0.919</td>
<td>0.925</td>
<td>0.932</td>
<td>0.934</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.952</td>
<td>0.950</td>
<td>0.928</td>
<td>0.920</td>
<td>0.919</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GF Change with Height/Speed

• Height
 – Non-TS GF change with height same form as TS: aH^b
 – Non-TS $R^2 = 0.9998$
 – No such comparison found in literature

• Speed
 – TS GF decrease with increasing mean speed
 – Non-TS GF show no consistent variation
 • Limited speed range
 • Lower speeds

<table>
<thead>
<tr>
<th>Source</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tower 313 non-TS</td>
<td>2.1096</td>
<td>-0.0941</td>
</tr>
<tr>
<td>TS Model</td>
<td>2.5668</td>
<td>-0.1148</td>
</tr>
</tbody>
</table>
GF Standard Deviation

- TS GF σ decreased monotonically with height/speed
- Non-TS σ showed no consistent variation with height or wind speed
- Ratios of non-TS to TS σ ranged from about 0.7 to 1.3 with no consistent height/speed patterns
Conclusions

- Use of same sensors/location reduce sources of comparison variance
- Non-TS GF < TS GF
- Result consistent with most studies in the literature
- Non-TS GF decrease with height similar to TS GF
- Unable to model the probability of exceeding specified peak speeds for non-TS due to inconsistent GF σ patterns