Impact of GPS-Based Water Vapor Fields on Mesoscale Model Forecasts

(5th Symposium on Integrated Observing Systems, Albuquerque, NM)

Jonathan L. Case and John Manobianco
NASA Kennedy Space Center/Applied Meteorology Unit/ENSCO, Inc.

Yuanfu Xie
NOAA/FSL

Randolph Ware*
UCAR and Radiometrics Corporation

Teresa Van Hove
UCAR
Presentation outline

- 3D water vapor analysis with GPS
 - GPS slant delays, simulated network
 - 3DVAR assumptions, results
 - Microwave profiler example
- Experiment design
 - Simulated slant GPS network
 - ARPS/ADAS assimilation
- Mesonet demonstration
- Summary
3D water vapor analysis with GPS

- GPS signals experience atmospheric delay
 - Dry atmospheric delay (temperature and pressure)
 - Wet atmospheric delay (water vapor)

- Slant path measurements
 - Delays for ~8 satellites in view
 - Provides strong horizontal constraint

- Humidity soundings
 - Needed for unique solution
 - Can be provided by microwave profilers
GPS slant delays

- Provide strong constraints on atmospheric temperature and humidity
- Low angle measurements simultaneously constrain many model cells
Simulated slant GPS network

- resolution
 - 40 km horizontal
 - 500 m vertical
- domain
 - Rockies and high plains
 - surface to 8 km

GPS and microwave profiler sites
3DVAR assumptions

- 40-km GPS grid (~1300 sites)
- Slant delays down to 1 degree elevation with 7% error
- 360-km microwave profiler grid (16 sites) with 8% error
- Surface humidity measurements at GPS sites with 5% error
Humidity fields at 750 m height. Size and location of the major convective features are similar. Humidity soundings are compared at dry (+) and moist (*) locations.
Comparison of dry (left) and moist (right) ground-truth and 3DVAR humidity soundings
Example microwave profiler sounding

Microwave profiler observations near Lamont OK by DOE of a dry line passage (around noon on 16 July)
Experiment design

Purpose
- Assimilate GPS slant delay data into mesoscale model
- Evaluate impact on forecast

Part I
- Analyze high resolution humidity field using 3DVAR and simulated GPS slant and tropospheric profile data
- Evaluate impact of these data on forecasts using the Advanced Regional Prediction System (ARPS)
- Initialize model using ARPS Data Analysis System (ADAS)

Part II
- Repeat experiment using real GPS and tropospheric profile data
- Evaluate impact of real GPS slant data on forecast
ARPS/ADAS assimilation

- resolution
 - 10 km horizontal
 - 412.5 m vertical
 (average)
 - Stretched vertical coordinate
- domain
 - Rockies and plains
 - surface to 16.5 km
Slant GPS test bed

- slant GPS (22)
- wind radars (7)
- microwave profiler (1)
- water vapor radiometers (5)
Mesonet demonstration

If forecast impact is large, regional mesonets could be instrumented.
Summary

- Simulations show that GPS slant data can be used for high resolution humidity analysis

- We plan to assimilate simulated and real data to determine the impact on mesoscale forecasts

- If the impact is significant, regional mesonets could be instrumented for demonstration experiments
Points of contact

- Jon Case
 case.jonathan@ensco.com
 321 853-8264

- John Manobianco
 manobianco.john@ensco.com
 321 853-8202

- Yuanfu Xie
 xiey@fsl.noaa.gov
 303 497-6846

- Randolph Ware
 ware@ucar.edu
 303 497-8005

- Teresa Van Hove
 vanhove@ucar.edu
 303 497-8023