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ABSTRACT

A study was performed to evaluate the reliability of inte-
grated modular (IM E) engine concepts . Comparisons were
made between the networked IME systems and non-net-
worked clustered (discrete) systems . The evaluation wa s
conducted for both expander cycle and gas generator cycl e
configurations to determine the reliability drivers of th e
IME concept . Both binomial approximation techniques
and Markov techniques were employed to evaluate tota l
system reliability . In addition, initial Failure Mode an d
Effects Analyses, Preliminary Hazard Analyses, and Faul t
Tree Analyses were performed to allow detailed evalua-
tion of the IME concept . A discussion of these system reli -
ability techniques is also presented .

INTRODUCTION

Integrated Modular Engine (IME) designs are currentl y
being considered for use in various space propulsion appli-
cations" In the networked, or modular, engine concept .
the turbopumps and the combustion chambers/nozzles are
joined by common manifolds . In this system . therefore, a
turbopump or a thrust chamber could be shut down inde-
pendently should a failure occur in either component .
Conventional non-networked, or clustered . engines. on th e
other hand . are designed such that each engine system is a

stand-alone unit . In the clustered system if a turbopum p

fails the corresponding thrust chamber must also be shu t

down . Therefore, the IME offers potential advantages o f
increased fault tolerance and reliability when compared to
clustered systems. It is the purpose of this report to evalu-
ate the reliability for both the IN1E and the clustered
engine system, to determine the reliability drivers of th e
IME system, and to conduct a sensitivity study on compo-
nent reliability of several critical parameters associate d
with the [ME.

Several techniques were used to evaluate the reliability of '
the integrated modular engine . A modified binomial
approximation teclurique was employed to characterize th e
reliability of the system based on the reliability of the var-
ious components . In the binomial approximation tech-
nique, or k-out-of-n model . "k" components out of a tota l
of "n" components must operate for the entire system t o

perform successfully . Markov techniques were also use d
to evaluate the effects of component failure on mission
parameters . Based on the present operational state of the
IME or clustered system, the discrete-time Markov pro-
cess enables the prediction of failure states . System reli-
ability functions were subsequently formulated by tim e
marching within the finite Nlarkov state space : i .e . . the co -
domain which included all feasible operational states and
the single system failure state . The emphasis of the trade -
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off studies using the binomial and AMarkov techniques wa s
in comparing systems. rather than on absolute reliabilit y

estimates due to a large uncertainty in the available com-
ponent reliability data .

Failure Mode and Effects Analyses (FMEA)were also
conducted for an IME system to determine the effects of a
single-point failure, such as the loss of a feed syste m
valve . Preliminary Hazard Analyses (PHA) were per -
formed to allow for a qualitative determination of the sys-

tem risk . Probabilistic risk assessment techniques wer e
also investigated, and initial investigations using fault tree

analyses were performed .

SYSTEM DESCRIPTION

An integrated modular engine design is provided in figur e
I . This design is based on a NASA Lewis Research Cente r
effort to examine the integrated modular engine concep t
and determine methods of physically assembling such a
system. In this IME design an expander cycle configura-

tion was used . As a baseline eight combustion chambers
were included with four turbopumps (4 turbines and 4
pumps) for both the liquid hydrogen and liquid oxyge n
feed systems . Five manifolds were required in this desig n
to isolate the chambers and the turbopumps should a fail-
ure occur in either subsystem . In addition, control valve s
were added on each of the turbines and thrust chamber s
and shut-off valves were included on each of the pumps t o
provide individual isolation of the components . By com-
parison, a clustered system, shown in figure 2, has n o
manifolds and four valves for each engine .

ASSUMPTIONS

Several key assumptions were used to formulate the analy -
sis using the binomial distribution :

1. Each thrust chamber assembly an included injector ,
ignitor, chamber, nozzle, plumbing, and valves, while th e
turbopump assembly included piping. valves, and the tur-
bomachincry . The turbopump bypass valves were treated
as separate entities .

2. Component shut-down rate estimates were obtaine d
from reference 4 . The component reliability is by defini-
tion the shutdown rate subtracted from unity .

3. Manifold reliability estimates were obtained by usin g
ducting reliability on existing space systems .

4. All similar components have the same constant reliabil-
ity .

5. The binomial distribution applies : no part ial failures of
components, active redundancy, non-repairable compo-
nents, no operability concerns (if one IME turbopum p
fails, the remaining turbopumps can meet the powe r
requirement) .

6. Except where noted, the health monitoring system coul d

identify and respond to a problem 100% of the time .

7. Except where noted, no common cause failures were
included .

8. Sensor or controller reliabilities were not included in th e
analysis .

9. In cases where redundancy was not considered . tota l
system failure was obtained by adding the failure rates o f
the individual components .

10. For the integrated modular engine the number of tur-
bopumps was half the number of thrust chambers ; for the
clustered system the number of turbopumps equalled the

number of thrust chambers .

11. If a turbine failed on either the oxygen or hydrogen th e
corresponding pump would be deactivated, and vice-versa .

Similar assumptions were employed in the Riarkov analy-
ses with the following exceptions or notations :

1. Fixed IA-ME and clustered configurations were analyzed .

2. Failure rates (number of failures per second of syste m
operation) obtained from reference 4 were used .

3. Total system failure was defined as the system inabilit y
to provide greater than or equal to 50% thrust .

4. Limited operability was addressed ; e .g . . failure of one
thrust chamber in the LME configuration forced an instan t
shutdown of the thrust chamber located I80" from the
failed chamber in order to maintain thrust vector control .
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RESULT S

Binomial Distribution Analysis

Figure 3 shows a binomial analysis comparison of the IM E
and clustered systems for the case of one thrust chambe r
out and one turbopump out . As can be seen by the figure ,
the clustered system provided reliabilities which varied
between 0 .99998 and 0 .99975 for 4 to 12 thrust chambers .
These reliabilities corresponded to system shutdown rates
of 0 .02 to 0 .25 per 1000 firings . In contrast, the IME had
reliabilities varying from 0.99789 to 0 .99773, or shutdow n
rates of 2 . I I to 2 .27 per 1000 firings, for 4 to 12 thrus t
chambers . Examination of the results showed that the ke y
parameters affecting the overall system reliability were th e
manifolds and the turbine bypass valves for the expande r
cycle IME configuration . Therefore, the sensitivity of sys-
tem reliability to the reliability of these components wa s
examined .

Figure 4 shows the effect of manifold reliability on tota l
system reliability using a binomial analysis . From the fig-
ure it can be seen that the clustered engine concept pro-
vided higher reliabilities when compared to the IM E
concept except when the manifold reliability was hig h
(low shutdown rate) . The manifold includes the connec-
tions from the component piping, and these connection s
may be the weak point in the manifold design . Therefore ,
because the manifold has been shown to be the reliabilit y
driver, it may be necessary to focus future efforts in IM E
design on the manifold reliability for the IME concept to
ultimately prove to be more reliable than clustered con-
cepts .

Additional trade-offs were performed to determine th e
effect of the correlation factor on the total system reliabil-
ity . The correlation factor is defined as the ability of th e
system to detect and mitigate failures in the propulsio n
system. From these studies it was found that the correla-
tion factor had a higher impact on system reliability for th e
IME concept than for the clustered concept . This resul t
indicates that the IMF design effort should concentrate o n
the integrated controls and health monitoring area to deter-
mine potential areas for improvement in this concept 5 .

Markov Analysi s

A discrete-time Markov analysis with 49 states was con -
ducted on the expander cycle IME configuration of figure

1 . In this analysis phase . manifold reliability was assume d
to be 1 .000 . Figure 5 illustrates the probability mass func-

tion of total system failure for this configuration . The

probability mass function gives the point-mass distributio n

of the probabilistic behavior of total system failure ove r
the IME operational time . From the figure . the expected
time-to-failure is 800 seconds . By accumulating probabil-
ity mass as a function of IME firing duration, system reli-
ability curves were defined . Figure 6 presents th e
reliability degradation of the IME expander cycle configu-
ration . At 800 seconds, the system reliability is 0 .64 . and
at 1000 seconds, the system reliability falls to 0 .50 . If a
99% reliability for this IME configuration were
demanded, the system should operate 138 seconds or less .
This Markov technique assists in defining IM E operationa l
envelopes based upon demanded reliability and compo-

nent failure rates .

CONCLUDING REMARKS

A study was conducted to evaluate the reliability of inte-
grated modular engine (IME) concepts . Both expande r
cycle and gas generator cycle configurations were exam-
ined, and the reliability of the 1ME was compared to tha t
of the non-networked, or clustered, designs . Binomia l
approximation and Markov techniques were used to ana-
lyze the systems . From the results the 1AIE designs wer e
less reliable than the clustered concepts except when th e
manifold reliability was high. In addition, while the
expander cycle provided higher reliabilities than the ga s
generator cycle in the clustered configuration . the opposit e
was true in the IME design . Additional trade-offs showe d
that the ability to detect and mitigate failures is critical t o
the 1ME design, and future studies into the integrated con-

trol and health monitoring of the IME are necessary .
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FIGURE 1 :
INTEGRATED MODULAR ENGINE (IME) SCHEMATIC DIAGRA M
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FIGURE 2 :
CLUSTERED (DISCRETE) ENGINE SCHEMATIC DIAGRA M
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FIGURE 3 :
COMPARISON OF IME AND CLUSTERED SYSTEM RELIABILIT Y
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FIGURE 4 :

EFFECT OF MANIFOLD SHUTDOWN RAT E
ON IME SYSTEM RELIABILITY
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FIGURE 5
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FIGURE 6
INTEGRATED MODULAR ENGINE SYSTEM RELIAB I
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