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Abstrac t

NASA Lewis Research Center contracte d
Aerojet and Rocketdyne to assess th e
Integrated Controls and Health Monitor-
ing (ICHM) technologies that woul d
enable hydrogen-oxygen rocket engine s
to be space-based, reusable, and
descent-throttleable . The results o f
these assessments are synthesized t o
determine the minimum required ICH M
functions and system elements, and t o
estimate the technology readiness an d
system cost . The minimum function s
include preflight checks, tank hea d
start, closed-loop thrust and mixtur e
ratio control with red-line/shutdown
safety monitoring, sensor validation /
fault accommodation, and conditio n
assessment . With the exception of th e
engine-dependent software and some o f
the advanced sensors, all the require d
elements have reached at least th e
technology readiness level of a lab -
oratory demonstration . The total ICHM
system readiness is at the level of a
conceptual design . The estimated cos t
to provide a minimum ICHM system ready
for demonstration on an engine syste m
testbed is estimated to be $30 to $4 5
million over six years .

Introduction

One way to substantially reduc e
operating costs for rocket engines i s
to eliminate or substantially reduc e
maintenance inspections . This can b e
accomplished by integrating an instru-
mentation and processing system int o
the engine controller which can measur e
and assess the engine's health before ,
during, and after engine firing . Such
an Integrated Control and Healt h
Monitoring (ICHM) system could als o
improve the engine's reliability b y
early detection and response to engine
degradations and failures .
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ICHM is the engine subsystem tha t
controls the engine and monitors th e
engine's health . It must provide
stable and responsive control over th e
full throttling range, prevent cata-
strophic engine failure, and reduce o r
eliminate the need for inspection an d
maintenance .

A first step toward realizing thes e
features is to select a representativ e
set of mission requirements and the n
assess the technology necessary t o
satisfy these requirements . Using the
Space Exploration Initiative (SEI )
missions as this representative set ,
this paper answers the followin g
questions about ICHM technology :
(1) What are the minimum ICHM function s
and technology elements necessary t o
satisfy the mission requirements ,
(2) is it feasible to satisfy the re-
quirements with the currently projecte d
ICHM technologies, and (3) how muc h
will it cost to advance these ICH M
technologies to the point were they ca n
be confidently incorporated into th e
development of next space engine ?

To answer these questions, thi s
paper summarizes and synthesizes th e
results of two different contracto r
assessments of ICHM technology (ref . 1
& 2) . The synthesis involves combining
their results into a single descriptio n
and using the differences to reflec t
the uncertainty of the conclusions .

Contractor Assessment Goal s

The contractors, Aerojet Propulsio n
Division of GenCorp, Sacramento ,
California, and the Rocketdyne Divisio n
of Rockwell International Corporation ,
Canoga Park, California, were eac h
tasked by NASA Lewis Research Center t o
(1) specify the minimum functions of a n
ICHM system capable of meeting a give n
set of mission requirements, (2) ident -
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ify the necessary system elements to
provide those functions, (3) estimat e
the current technology readiness o f
each element, and (4) estimate the cos t
to advance the technology to the level
where it is ready for a system demon-
stration on an engine system testbed .
A demonstration on an engine syste m
testbed is considered sufficient tech-
nological advancement to confidentl y
proceed with the development of a pro-
totype engine incorporating ICHM . Each
contractor was asked to use their own
Orbit Transfer Vehicle engine design s
as the referenced engine technology .

Mission Requirement Assumption s

The most applicable mission scenar-
ios that cover the general goal o f
improving operational efficiency an d
reliability, plus addressing the issue s
of in-space engine operations and oper-
ational flexibility, are the SE I
missions . The advanced space chemica l
engines for the SEI missions are re-
quired to be human-rated, space-based ,
reusable without major service, an d
throttleable for descent maneuvers .

Basic Engine Operation The
propulsion system, consisting of 4
engines, is required to be human-rate d
and fail-operational/fail-safe . This
means that the propulsion system mus t
still operate in the event of on e
failed engine (fail-op) and present n o
catastrophic hazards to the vehicle in
the event of a second failed engine

(fail-safe) . This translates to usin g
a shutdown response to a failure withi n
an engine, and having the capacity for
engine-out operation of the propulsion

system . The single-engine reliabilit y
is quantified as having a 0 .997 5
probability of completing the mission .

Because these engines will be used

for space transfer, they must b e
capable of starting in zero gravity .
This is accomplished by assuming the
use of a tank head start for th e
engines .

Reusability Reusability mean s
sustaining reliability without major
service . This is quantified as havin g
a service-free life of 100 starts with
4 hours total firing duration . This is
based on a 5 mission life times a
factor of 4 as a safety margin .

Space-Basing The space-basin g
assumptions are that there would be no
in-space facilities to routinely in-
spect the engine, and that the entire
engine would be the in-space replace -
able unit .

Descent Throttling A 10 :1 throt-
tling range (from 100% to 10% thrust )
is assumed . No guidelines were avail -
able for specifying the throttlin g
response-time requirements for th e
engines .

The baseline engine from the mission
studies is a throttleable cryogeni c
hydrogen-oxygen expander-cycle rocke t
engine that is designed for high per-
formance (high specific impulse and
long life), reusability, human-rating ,
and space-basing . The thrust level is
designated to be approximately 90 to
111 kilo-Newton (20,000 to 25,00 0
pounds) thrust, and have a throttlin g
range of approximately 10 :1 for lunar
descent maneuvering .

With the exception of the maximu m
thrust rating, these characteristic s
are identical to the requirements o f
the Orbit Transfer Vehicle Engines fo r
which both Aerojet and Rocketdyne com-
pleted preliminary designs (contract s
NAS3-23772 and NAS3-23773) . Each
contractor was tasked to use thei r

Product Evolution Since the missio n
studies assumed that one engine would

The specific mission requirements

	

be used for the variety of vehicles, a
assumed for this study are based on

	

certain degree of flexibility fo r
various studies by the NASA Office of

	

product improvement is required to b e
Exploration which describe missions and designed into the engine .
vehicles for supporting a lunar base .
The aspects of these study results that Referenced Engine Technology
drive ICHM requirements (discussed i n

ref . 3) were provided to each con -
tractor and are outlined below .
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preliminary design as the referenc e
around which to specify the ICHM

system . The engine descriptions ar e
included with each of the ICHM assess-
ment reports (ref's 1 & 2) . The
Aerojet design is a 34 kN (7500 lb )
thrust dual-expander engine, and the
Rocketdyne design is a 34 kN (7500 lb )
thrust full-expander engine .
Rocketdyne states in their report tha t
all conclusions based on the 34 kN
(7500 lb) engine would be equally vali d
for a 90 kN (20,000 lb) engine .

Minimum Required ICHM Function s

Based on the mission requirements ,
both contractors derive similar list s
of minimum ICHM functions and features .
To avoid confusion from the differen t
terms and arrangements of each contrac-
tor's list, the lists are synthesize d
into the single list presented below .
The four major functional areas are :
engine control, safety monitoring ,
diagnostic monitoring, and condition
assessment . This synthesis contains
all the pertinent items from eithe r
contractor, and in those cases where
only one contractor proposed a func-
tion, that difference is mentioned .
Where applicable, references are cite d
for functions that are discussed mor e
thoroughly in other references .

Engine Control

Normal engine operation spans sev-
eral phases that are summarized below .
A complete list of phases and the asso-
ciated status of the control and moni-
toring functions is detailed in the
Aerojet report (ref . 1) .

A . Prestart Check s
B . Start Sequenc e

1. Chill-down
2. Tank Head Ignition
3. Tank Head Idl e
4. Pumped Idl e

C . Main Stage
1. Proportional Throttling
Control (closed loop on
chamber pressure )
2. Proportional Mixture Rati o
Control (closed loop on flow )

D . Normal Shutdown

1. Throttle Down
2. Post-firing Safing

E. Dormancy
F. Engine Replacement

Prestart Checks The prestart check s
involve powering up the ICHM system and
performing built-in tests plus som e
degree of assessing the condition o f
the engine using data from the previous
firing and using the sensor outputs
during the engine's start sequence .

Although both contractors includ e
prestart checks as one of their ICH M
functions, a more in-depth study wa s
conducted under NASA contract (ref . 4)
in parallel with these assessments t o
identify and compare various methods
for performing automated prestar t
readiness checks . These methods span a
range from actual test-firing to a n
entirely static checkout (no physica l
cycling of any components) . The tech-
nology readiness and remaining develop-
ment cost of these methods is outline d
in this study . (At the time of writin g
this paper, no conclusions were ye t
available . )

Start Sequence The tank head start
sequence involves phases to satisfy th e
requirement of a zero-gravity engin e
start . The duration of this sequenc e
varies, but it can take several sec-
onds . Note that a chill-down phase i s
required which is accomplished by vent-
ing cryogenic propellants through the
engine prior to ignition .

Main Stage To provide missio n
profile and propellant utilizatio n
flexibility, both the thrust and mix-
ture ratio are continuously variable ,
rather than having discrete design -
point settings . This is accomplished
by using multi-variable closed-loo p
control of thrust and mixture ratio
based on the feedback from combustio n
pressure and propellant flow, respec-
tively . Other parameters such as valve
positions or temperatures may also b e
required in the feedback loops . Depen-
ding on engine design, other parameter s
may also be subject to closed loop con-
trol, such as the control of the oxygen
turbine inlet temperature in the cas e
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of the Aerojet dual-expander engine .

Shutdown The time to go from full
thrust to zero thrust may be as long a s
two to three seconds because of th e
large residual propellant volumes down -
stream of the main shutoff valves (ref .
1) . After the engine is at zer o
thrust, the engine is vacuum purged an d
the actuators are set to safe position s
for dormancy .

Dormancy Assuming that the engine s
will be space-based and reusable ,
another phase of engine operation i s
the dormancy period when the engine i s
not used . Both contractors specif y
that heaters are required to preven t
degradation of the electronics durin g
this period . No other specifics ar e
addressed concerning possible engin e
degradations from long term exposure t o
the hazards of the space environment .

Space hazards were inventorie d
under a separate grant to the Univer-
sity of Cincinnati (ref . 5) . Thi s
study identifies the types and relativ e
magnitudes of space hazards in the low -
Earth-orbit (LEO) to lunar spac e
regimes . The specific effects tha t
these hazards would have on rocke t
engines have not yet been determined .

Engine Replacement Another opera-
tional phase, assuming the engine i s
space-based, is the replacement of an
engine in a vehicle and the associate d
checks to insure the integrity of thi s
installation . Neither contracto r
details the impacts of this phase othe r
than through the regular prestar t
checks .

Safety Monitorin g

For the safety of the crew an d
vehicle, critical parameters of th e
engine's operation are monitored . I f
these parameters exceed preset red-lin e
values, the engine will be immediatel y
shutdown to prevent catastrophic fail-
ure . Both contractors specify usin g
this red-line/shutdown method fo r
safety monitoring . In addition, both
contractors specify the use of senso r
validation and fault accommodation as a
minimum feature . Sensor validation/

fault accommodation refers to method s
that check sensors for erroneou s
outputs, and if detected, remove tha t
sensor's output from the control logic .
Either redundant sensor data or analyt-
ical redundancy replaces that sensor' s
output .

An additional feature to the abov e
described red-line method is the capac-
ity for condition-dependent red-lines .
Condition-dependent red-lines ar e
values that change depending on th e
operational phase of the engine . Sinc e
only one contractor, Aerojet, specifie s
having this feature, this feature i s
considered only a candidate minimum
requirement . Aerojet proposes to
provide this feature by separating th e
control and monitoring computers in th e
control architecture . The monitoring
computer sets the red-line value s
depending on engine conditions, and the
control computer uses the red-line
values in the usual manner .

Another aspect of safety monitorin g
is engine-out accommodation . In the
event of one failed engine, the remain-
ing engines in the propulsion system
must either throttle-up or shutdown t o
maintain the vehicle's thrust balance .
This requires having the capacity t o
initiate a synchronized emergency shut -
down of a healthy engine and a synch-
ronized throttle-up of the remainin g
engines .

Diagnostic Monitoring

"Diagnostic monitoring" is the real -
time monitoring of engine performanc e
to detect off-nominal performance an d
to possibly adjust the controls to en -
sure that the engine can complete th e
mission . This implies real-time detec-
tion and identification of engine fail-
ures and degradations, and having con-
trol options to respond to these fail-
ures and degradations . This degree o f
control sophistication is sometime s
called "adaptive control . "

This function is only proposed by on e
contractor, Aerojet, and thus it i s
considered only a candidate minimum
requirement .
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Condition Assessment

"Condition assessment" is the ter m
used to refer to the process of collec-
ting and analyzing the engine dat a
after a firing to identify degrada-
tions, identify anomalous performance ,
and to possibly estimate the remaining
life of the engine . Both contractor s
leave open the option of where thi s
function is performed ; on the vehicl e
or on ground-based computers . Thi s
function is sometimes referred to a s
"post-flight" or "post-hot-fire "
analysis .

Minimum ICHM System Element s

With the exception of certai n
sensor technologies and the degree o f
functional sophistication of the soft -
ware, both contractors propose simila r
lists of ICHM system elements . Thes e
elements are summarized into the fol-
lowing categories : architectures ,
electronics, sensors, control effec-
tors, and software . Rather than
providing a single synthesized list ,
the proposed elements from both con -
tractors are summarized here t o
indicate the span of possible method s
for providing the minimum functions .

Architecture s

"Architecture" refers to the con -
figuration and interconnections of th e
ICHM system components . Aerojet and
Rocketdyne both use modular architec-
tures with more than one processor, bu t
configure the architecture of thes e
processors differently . Both contrac-
tors provide at least dual-redundanc y
for the electronics in their architec-
tures . Simplified versions of th e
Aerojet and Rocketdyne architecture s
are shown in Figures 1 and 2, respec-
tively . In both reports architecture s
are provided at the system level, an d
more detailed schematics are provide d
for the engine controller electronics .

for all circuitry, and triple redun-
dancy for the control and monitorin g
processors . Two of the channels are
identical and each contain a processo r
for the control functions, a processo r
for the monitoring functions, and cir-
cuits that interface with the othe r
channels, the sensors, the effectors ,
the vehicle and telemetry bus, th e
control and instrumentation bus, an d
the optical disk data storage device .
The third channel contains control an d
monitoring processors, the interchanne l
interface circuits, and circuits that
interface with some of the sensors .
Pre-processors are proposed for th e
more advanced sensor systems such a s
the plume spectrometer and leak detec-
tors, and some signal conditionin g
circuits are resident within th e
bearing deflectometers and shaf t
deflectometers . To accommodate th e
large amount of data collected by this
system, an optical disk is als o
proposed .

Rocketdyne uses a dual redundan t
architecture with dual sets of sepa-
rate, self-checking, processors for the
input, control, and output functions .
These processors are linked via dua l
redundant busses . The input processor
provides signal conditioning, digitiz-
ing, and sensor validation/accommoda-
tion to provide valid sensor data to
the control processor . The contro l
processor receives data from the inpu t
processor, commands from the vehicle ,
and performs control and monitoring
functions that provide the engine
actuator commands to the output proces-
sor . The output processor contains th e
drivers and feedback processing to com-
mand and verify the status of all th e
engine's control actuators .

Electronics

Aerojet specifies using Intel i8096 0
based 32 bit RISC processors, MULTI-BU S
II backplanes, and a MIL-STD-1553 type
bidirectional digital interfaces .

Aerojet patterned their ICHM system Aerojet also provides specific choice s
after their AREC II (Advanced Rocket for the variety of interface circuits .
Engine Controller) (ref . 1) . This sys- Rocketdyne does not specify the exac t
tem consists of three backplane buss

	

components that would be used, but doe s
channels which provide dual redundancy

	

list candidate components that ar e
similar to Aerojet's selections .
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Sensors :

Both contractors specify sensor s
for measuring temperature, pressure ,
vibration, flow, actuator position, an d
pump speeds . The number and type o f
sensors for both the Aerojet an d
Rocketdyne systems are listed in Tabl e
I . With the exception of Aerojet' s
larger number of sensors for th e
actuators and their extra advance d
sensors, both contractors have roughly
50 to 60 sensors in each of thei r
systems . Aerojet further specifie s
which sensors are duplicated fo r
redundancy . Rocketdyne does no t
specify which sensors would b e
duplicated for redundancy because they
require more definition of the operat-
ing requirements before they ca n
specify redundancies .

Aerojet also proposes using some
newer sensors to augment the tradition -
al sensor set . These included a Fabre -
Perot interferometric plume spectrom-
eter, two unspecified sensor system s
for sensing oxygen and hydrogen leaks ,
capacitance type three-axis shaf t
deflectometers for the turbopumps, and
capacitance displacement bearin g
deflectometers . Along with each o f
these advanced sensors are associate d
data processing or signal conditionin g

electronics .

Rocketdyne specifies more advance d
sensor technology for pressure an d
actuator position measurement . They
specify silicon-on-sapphire (SOS) pres-
sure transducers and position resolvers
over the more mature strain gage pres-
sure transducers and linear-variable-
differential-transformers (LVDT) . The
SOS technology offers higher accuracy ,
wider range, longer-term stability, an d
higher temperature tolerance than th e

conventional alternatives . Rocketdyne
also proposes using eddy current sen-
sors instead of limit switches . As
alternative technologies, Rocketdyn e
lists the more conventional pressur e
transducers, LVDTs, and limit switche s
in their sensor list .

Control Effector s

Both contractors specify using

electro-mechanical actuators (EMA) wit h
DC motors for valves, gimballing, an d
nozzle extension/retraction .
Rocketdyne additionally specifies a
pneumatic back-up for their EMAs t o
effect a fail-safe engine shut-down in
the event of an EMA failure . Both
contractors use spark igniters, an d
Rocketdyne listed plasma torch igniter s
as an option .

The type and quantity of contro l
effectors is outlined in Table II .
Aerojet specifies 6 proportional and 6
on/off valves, while Rocketdyne speci-
fies 3 proportional and 5 on/of f
valves . The reason behind the greater
number of valves in the Aerojet syste m
is partly due to their choice of th e
dual-expander engine cycle .

Aerojet also proposes an additiona l
gimbal actuator for engine-ou t
compensation .

Software

The categorization of the softwar e
elements parallels the synthesized ICH M
functions presented earlier . An abbre-
viated list of software elements i s
provided below :

Engine Control :
A . Prestart Check s
B . Start Sequenc e
C . Main Stag e

1. Proportional Throttlin g
Contro l
2. Proportional Mixture Ratio
Contro l

D . Normal Shutdow n
1. Throttle Down
2. Post-firing Safing

E . Dormancy
F . Engine Replacement Integrity
Check
Safety Monitoring
A. Red-line/shutdown Monitorin g
B. Condition-dependant Red-line s
C. Sensor Validation/Fault
Accommodation
Diagnostic Monitoring
A. Performance Failure
Identification/Accommodation
B. Component Failur e
Identification/Accommodation
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Condition Assessmen t
A. Data Managemen t
B. Engine System
Failure/Degradation Identificatio n
C. Component Failure/Degradatio n
Identification

Of these functions, each contracto r
lists the sensor inputs and command s
that are required to perform each func-
tion . Three examples ; throttling con-
trol, mixture ratio control, and red -
line monitoring, are summarized next .

During main stage, Aerojet control s
2 valves for throttling using the feed -
back from 3 sensors : combustion pres-
sure and 2 valve positions . Rocketdyne
controls one primary valve for throt-
tling using feedback from 2 sensors :
combustion pressure and valve position .
In both systems, other valves are als o
adjusted to balance the cycle durin g
thrust and mixture ratio changes .

For main stage mixture ratio con-
trol, Aerojet controls 2 valves usin g
the feedback from 8 sensors : 2 flows, 2
temperatures, 2 pressures, and 2 valv e
positions . Rocketdyne controls on e
primary valve using feedback from 4
sensors : 2 flows and 2 valve positions .

For red-line monitoring, Aeroje t
monitors 11 items based on the input s
from 51 sensors, and Rocketdyne direct-
ly monitors 8 red-line sensors .

Because of Aerojet's condition -
dependent red-lines, real-time diagnos-
tics, the possibility for adaptive con-
trol, and the extra sensors, the magni-
tude of the Aerojet software is large r
than the Rocketdyne software .

Discussion of Difference s
in Contractor Minimum s

Based on the mission requirements ,
both contractors derive similar list s
of minimum ICHM functions and features ,
but each propose different approache s
to provide these functions . Some o f
these differences span a range of capa-
bilities or technical maturity . Thi s
indicates that there is a reasonabl e
certainty about what ICHM functions are
required, but there are a variety o f
ways to provide these functions .

The most noticeable differences i n
capabilities are the use of condition -
dependent redlines, the possibility for
adaptive control, and the inclusion of
advanced sensors, which are all exclu-
sive to the Aerojet system . Aerojet
states in their report that these fea-
tures and sensors are included as mini -
mum features to address the substantia l
reliability requirement associated wit h
reusability and zero maintenance, and
to provide the necessary flexibility t o
accommodate mission variations and
product improvements .

To leave open the option of includ -
Because a complete engine design is

	

ing these extra features, the synthe -
a prerequisite for further software

	

sized list of minimum functions and
descriptions, neither contractor de-

	

features presented earlier includes the
tails the software or algorithms that

	

extra features of the Aerojet system .
would be used to answer each function .

	

As more definition of the missions ,
Aerojet does, however, specify using a

	

vehicles, and engines become available ,
UNIX based derivative for the operating the exact characteristics of the ICH M
system, with Ada code . Expert systems

	

system can be refined to reflect thos e
written in Ada code are listed for the

	

specifications .
diagnostic executive, the prefligh t
readiness, the sensor failure identifi-
cation, the performance failure ident-
ification, and the component failur e
identification programs . Rocketdyne
states that much of the software coul d
be based on the existing SSME software ,
the SSME Block-II controller software ,
and the RS-44 engine software .

Technology Readiness Estimate s

Both the proposed systems requir e
more advanced technologies than thos e
used in the existing Space Shuttle Main
Engine (SSME) or the RL-10 . Both study
contractors use more than one proces-
sing unit in their architecture ; us e
multi-variable, closed-loop control fo r
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continuously variable thrust and mix-

	

ual designs . A software simulation o f
ture ratio ; use sensor validation and

	

either of these systems that takes int o
fault accommodation to address the

	

account a dynamic engine model an d
potential problem of a failed sensor ;

	

characteristics of the sensors ,
use EMAs for valves and gimballing ; and effectors, and interconnecting elec -
use some of the newer software tech-
niques, such as expert systems, fo r
some of the fault and degradatio n
detection functions .

To provide a more accurat e
assessment of the level of technica l
maturity for these minimum ICHM tech-
nologies, the contractors assessed the
technology readiness of all their sys-
tem components using the same ratin g
scale that is used by the NASA Offic e
of Exploration (described in ref . 3) .
This scale provides a consistent base -
line for comparing the maturity o f
various technologies .

The contractors' assessments hav e
been summarized into the followin g
categories : system configuration, sen-
sors, control effectors, electronics ,
and software . Their results have been
synthesized to remove the ambiguities
caused by the different interpretation s
of the readiness scale . A short state-
ment about the next steps to advanc e
each category of technology to the next
readiness level has also been added .

In general, both Aerojet's an d

Rocketdyne ' s estimates of the tech-
nology readiness are about equal .
Their assessments conclude that all th e

required technologies have already been

demonstrated in the lab or in simila r

applications, with the exception of the

advanced software and system integra-
tion which have reached the level o f

proof of concept . The magnitude of the
remaining work is reflected by the cos t
estimates discussed in the nex t
section .

System Configuration

System integration technology ha s
reached at least the level of concept-
ual design and perhaps as high a s
having been demonstrated in the lab ,

depending on interpretation of th e

terms used in the rating scale . The

systems described in the Aerojet and

Rocketdyne reports constitute concept -

tronics would constitute a proof-of-
concept demonstration . An on-engine
test of a breadboard ICHM system ,
including actual sensors and effector s
would constitute having demonstrated a
system in a relevant environment .

Sensors

Many of the required sensors ar e
already used in space flight systems ,
and most of the advanced sensors hav e
reached at least the level of a labora-
tory demonstration . Some of the mor e
advanced sensors have also been teste d
in relevant environments . Furthe r
sensor advancement typically require s
the application of laboratory-proven
sensors into relevant environments such
as rocket engine component test stands .

Control Effector s

EMAs have been demonstrated in th e
lab and in other aerospace applica-
tions . The valves for this class o f
10 :1 throttleable, hydrogen-oxygen
engines have at least been conceptuall y
designed . Some of the simpler valve s
are more mature, being based directly
on valves used in similar applications .
Further EMA advancement for spac e
engines may only require the applica-
tion of EMA technology to a
representative testbed engine .

Electronic s

All the specified electronics ar e
used in other applications, and thu s
are considered to be at the level of a
lab demonstration or higher . Furthe r
advancement of the electronics onl y
requires the application of this tech-
nology to a representative testbe d

engine .

Software

Software technology has either bee n
conceptually designed or reached th e
level of proof of concept, depending o n
the specific function . Software tech -
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nology is less advanced than the othe r
technologies mainly because furthe r
software development requires a specif-
ic engine design and ICHM system con -
figuration as a prerequisite . For
example, complete engine models ar e
required to design control methods suc h
as gains and valve schedules and t o
guide failure modeling . Specific
engine failure mode and effects analy-
sis (FMEA) and test data would also b e
useful in refining failure and degrada-
tion detection software . Both contrac-
tors state that specific engine design s
were necessary prerequisites to advanc-
ing ICHM software .

Cost Estimate s

Total System Cos t

The cost to provide a complete ICH M
system ready for testing on an engin e
system testbed is estimated to b e
between $30 and $45 million . This
requires a six year technology develop-
ment period . The cost estimat e
includes all sensors and effector s
which are normally considered as par t
of the engine cost . This estimate doe s
not include the cost of testing th e
ICHM system on a testbed engine, bu t
Rocketdyne specifies that a represen-
tative test series would include 1 7
tests of 300 seconds duration each .

To estimate the cost to add an ICH M
system to a given engine it would b e
necessary to subtract the cost of al l
sensors, valves, actuators, and elec-
tronics that already exist on th e
engine . Depending on the engin e
choice, this could substantially reduc e
the cost of the ICHM system .

Another important aspect of th e
cost of an ICHM system is the potentia l
savings from having an ICHM syste m
during the technology developmen t
program . Since the ICHM system i s
designed to prevent catastrophic fail-
ures, the ICHM system can repeatedl y
save the cost of replacement engine s
and facility repairs . The ICHM system
is also designed to reduce or eliminat e
inspections and could be used to mini-
mize unnecessary maintenance inspec -

tions, further reducing the cost of th e
engine technology development program .

Range and Uncertainty
of Cost Estimate s

The span of $30 to $45 million i n
the estimates reflects both the differ-
ences in the individual contracto r
estimates, and the level of uncertaint y
within each estimate . Both Aerojet and
Rocketdyne state a possible error band
of +/- 15% (approx . +/- $6M) exist s
within their estimates .

The differences between the indi-
vidual estimates are due to the addi-
tional costs of Aerojet's more advance d
sensors and software, and Rocketdyne' s
larger estimate for electronics . Aside
from these differences, the cost esti-
mates from both contracts are approx-
imately equal and thus reflect a
reasonably representative estimate .

The estimate for the cost o f
comparable electronics is significantly
different between the two contractors .
Aerojet estimates about $8M for thei r
electronics (not including the advance d
sensor electronics), and Rocketdyn e
estimates about $26M for electronics .
This is a considerable difference .
Aerojet has a more detailed listing o f
the electronic components, and th e
Rocketdyne estimate is based on exper-
iences with the Block II SSME control-
ler . Other than this distinction ,
there is not enough information in the
reports to objectively determine the
reasons behind this difference .

Itemized Cost s

The cost estimates are broken dow n
into the following four categories :
sensors, control effectors, electron-
ics, and software . By filtering th e
contractor results into these categor-
ies, separating out costs for Aerojet' s
more advanced features, and separating
out the major cost difference on elec-
tronics, a synthesized break down o f
costs becomes : sensors, $1M ; contro l
effectors, $13M ; electronics, $8M ; and
software, $6M . Adding advanced sensors
would add about $4M, and adding more
sophisticated software would add abou t

9



another $4M .

	

Vehicle Propellant System Fo r
compatibility with this class o f

The advanced sensor estimate is

	

engines, the propellant tanks ar e
derived by isolating the costs of the

	

assumed to have the followin g
sensors and electronics associated with characteristics :
Aerojet's advanced sensors . The

	

(1) Pressure regulation is provide d
advanced software estimate is derived

	

by the vehicle .
by subtracting Rocketdyne's estimate

	

(2) The vehicle supplies the inle t
for the more basic software fro m
Aerojet's estimate for a more advance d
software package .

The most critical components fo r
condition monitoring are the high-spee d
turbopumps (speeds greater than 70,00 0

rpm) . The sensors and algorithms

	

Vehicle ICHM Communicatio n
associated with monitoring high speed

	

Communication between the vehicle an d
bearings, seals, and shaft dynamics are the ICHM system will be via a tripl e
critical elements of an ICHM system for redundant connection to a bidirectiona l

digital bus, such as MIL STD 1553B .
The ICHM system will provide engin e
status to the vehicle and all dat a
through the vehicle for telemetry . I t
is assumed that the vehicle syste m
provides the following commands :

(1) Start-up and shutdown command s
(2) Thrust leve l
(3) Mixture rati o

(4) Gimbal angl e
(5) Nozzle positio n

The difference in system cost fro m
adding more advanced sensors and soft -
ware is relatively insignificant com-
pared to the span of the total cos t
estimate ($8M versus $15M), indicating
that cost may not be the major driver
to selecting the required degree o f
capability for a complete ICHM system .

The distribution of costs for the
synthesized estimate, the Aeroje t
estimate, and the Rocketdyne estimat e
are shown in the pie charts of Figure s
3, 4, and 5, respectively .

Other Finding s

High Speed Turbopumps

propellent valves .
(3) Propellant tanks are pressurize d
using autogenous gas supplied fro m
the engine .

Vehicle Electrical Power Twenty -
eight volt direct current electrica l
power was assumed to be provided by th e
vehicle and have the followin g
characteristics :

(1) During periods where the engine s
are not being used, continuous powe r
will be required for heaters t o
prevent deterioration of th e
electronics .
(2) Immediately prior to, during ,
after engine operation, modest powe r
will be required to drive the ICHMM
electronics . The ICHM system shall
have its own power regulators .
(3) Immediately prior to, during ,
and immediately after engine opera-
tion, intermittent power will b e
required to drive all engine EMA s
and other control effectors .

this class of engine . Rocketdyne
addresses this subject by suggesting
the use of newer software techniques ,
and Aerojet addresses this subject by
suggesting the use of three-axis shaft
deflectometers, bearing deflectometers ,
and advanced software .

Vehicle Interface Assumption s

Since the engine's ICHM system is a
subset of the entire vehicle's control
and monitoring system, one aspect o f
the ICHM system is the vehicle inter -

face . Both Aerojet and Rocketdyne use

	

Based on the results of the Aeroje t
virtually identical assumptions for the and Rocketdyne assessments, it appear s

vehicle interface . These assumptions

	

to be feasible to provide the tech -

are listed next .

	

nology to meet the ICHM needs o f
projected SEI missions . The missio n

Summary of Conclusion s
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requirements are assumed to include :
human-rating, space-basing, five -
mission reusability without majo r
service, and lunar descent throttling
control . It is estimated that such an
ICHM system could be ready for testin g
on an engine system testbed within si x
years and for a cost between $30 an d
$45 million .

The cost estimate includes many
components which are normally consid-
ered part of the engine cost (sensors ,
valves, and actuators), and thus th e
actual added cost of the ICHM syste m
may be less than $30-45 million . The
cost differences of adding the mor e
advanced features or sensors i s
relatively insignificant compared t o
the span of the cost estimates .

Another aspect of the ICHM syste m
costs is the potential savings fro m
having an ICHM system . Every time the
ICHM system prevents the catastrophi c
failure of the testbed engine it save s
the cost of a replacement engine plu s
the cost of repairing the tes t
facility . Further savings could b e
realized by using the ICHM's conditio n
assessment function to minimiz e
unnecessary maintenance inspections .

The minimum required function s
include : nominal engine control encom-
passing preflight checks, a star t
sequence that includes chill-down an d
tank-head start, main stage with pro-
portional thrust and mixture rati o
control ; safety monitoring usin g
condition-dependent red-line/shutdow n
methods, plus sensor validation/faul t
accommodation ; real-time diagnosti c
monitoring with the option for adaptiv e
control ; and post-firing conditio n
assessment to detect component degra-
dations . Of these functions, th e
condition-dependent feature for red -
lines and real-time diagnostics wit h
the option for adaptive control ar e
candidate features .

To provide these functions, tech-
nology that is more advanced than tha t
used in existing flight-proven rocke t
engines is required . These include :
modular architectures with multiple 3 2
bit processors, closed-loop multi -

variable proportional control for a t
least the thrust and mixture ratio ,
sensor validation/fault accommodation ,
and the use of EMAs .

In addition, the following senso r
technologies may be minimally required :
silicon-on-sapphire pressure an d
position sensors, a plume spectrometer ,
bearing deflectometers, turbopump shaf t
deflectometers, and distributed hydro-
gen and oxygen leak detection systems .

With respect to mission and vehicl e
planners, the noteworthy items include :
The engine's chill-down phase involves
propellant dumping ; a tank head star t
was assumed for the engine whic h
requires a few seconds to reach ful l
thrust ; the shutdown may take 2 to 3
seconds to reach zero thrust ; electri-
cal power is required from the vehicle
to run EMAs during engine firing and t o
run heaters in the electronics durin g
dormant periods ; propellant tanks ar e
assumed to be autogenously pressurize d
by gas from the engine ; and a MIL-ST D
1553B or similar bus will be used fo r
communication between the engines' an d
the vehicle's control and monitoring
systems .

Virtually all of the technologie s
required to provide the minimum ICHM
system have reached at least the leve l
of a laboratory demonstration and som e
are in use today in other systems . The
least mature of the technologies are
the advanced sensors, the software, and
system integration . Further sensor
advancement typically requires th e
application of the sensors into a
relevant environment . Further softwar e
advancements require specific engin e
designs as a prerequisite . System
integration would be satisfied b y
building an ICHM system and testing i t
on an engine system testbed .

Topics that still remain to be full y
addressed include preflight assessment
methods, automated methods to verif y
the integrity of an in-space engine
installation, and methods to monitor or
compensate for long term exposure to
space hazards .
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TABLE I .
SENSOR TYPES AND QUANTITIE S

AEROJET ROCKETDYN E
MEASURAND

QUANTITY TYPE QUANTITY TYP E

cryogenic temperature 4 platinum RTD 16 RTD

other temperature 17 K-thermocouple 0

pressure 15 strain-gage 15 silicon on
sapphir e

vibration 2 piezoelectric 4 piezoelectri c

flow 2 vortex sheding 2 turbine

actuator position 16 limit switch 6 eddy curren t

actuator displacement 10 LVDT 3 SOS resolve r

effector current 5 inductive 4 not specified

pump shaft speed 5 capacitive 4 variable
reluctanc e

pump shaft deflection 9 capacitive 0

bearing deflectometer 4 capacitive 0

plume spectrometers 1 interferometer 0

leak detection system 2 not specified 0

TOTAL # OF SENSORS 92
(118 with

redundancy)

54

TABLE II .
CONTROL EFFECTOR S

CONTROL ELEMENT AEROJET ROCKETDYN E

QUANTITY TYPE QUANTITY TYPE

proportional valves 6 EMA pintle 3 EMA secto r
ball

on/off valves 2 EMA ball valve 2 EMA ventur i
ball

on/off valves 4 solenoid poppet 3 solenoid
poppe t

gimbals 4 EMA linea r

actuator
2 EMA linear

actuato r

nozzle extend/retract 1 EMA ball screw 1 EMA

igniters 1 spark Lighter 2 spark igniter

TOTAL # OF EFFECTORS 18 1 3
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Figure 1 . - Aerojet ICHM System Architectur e
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Figure 3 . - Synthesized Cost Estimate
(Totals $28M base + $8M for adv. elements)

Figure 4. - Aerojet Cost Estimat e
(Totals $33 .8M )

Figure 5 . - Rocketdyne Cost Estimat e
(Totals $46 .3M)

Electronics ($8M) Base Sensors ($1 M )

Adv. Sensors ($2M )
Adv. Sensor Electronics ($2M )

Software ($9.7M)

	

Control Effectors ($11 .1M )

Electronics ($7 .7M)

Base Sensors ($0 .9M )

Adv . Sensors ($2 .6M )
Adv . Sensor Elect . ($1 .8M )
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